NSF Award Abstract

- #0215641

CSED1: Collaborative Research: Thermal, Petrological, and Seismological Study of Subduction Zones

NSF Org EAR

Latest Amendment Date August 12, 2003
Award Number 0215641
Award Instrument Continuing grant
Program Manager Robin Reichlin
EAR DIVISION OF EARTH SCIENCES
GEO DIRECTORATE FOR GEOSCIENCES

Start Date September 1, 2002
Expires August 31, 2005 (Estimated)
Expected Total Amount $130126 (Estimated)

Investigator Bradley R. Hacker
hacker@geol.ucsb.edu (Principal Investigator current)

Sponsor U of Cal Santa Barbara
Office of Research
Santa Barbara, CA 93106
805/893-4188

NSF Program 1574 GEOPHYSICS

Field Application 0000099 Other Applications NEC
Program Reference Code 0000,1031,OTHR,
Abstract

Most of the world's earthquakes occur in subduction zones where oceanic lithosphere descends into the mantle. Intermediate-depth earthquakes, which occur at 40-300 km depth, and the transport of water into the mantle are intimately linked to metamorphic reactions in the subducting lithosphere. The researchers propose to better understand subduction-zone processes by integrating seismological observations with thermal and petrological models. In order to test the dehydration-embrittlement hypothesis for intermediate-depth seismicity, the investigators will construct two-dimensional kinematic-dynamical thermal models for a set of subduction zones that span a range in subduction parameters and that include regions with significant along-strike variations in observed seismicity. Events in global and regional seismicity data sets will be systematical evaluated and relocated in order to test the hypotheses that (a) upper seismic zones are confined to the subducting mafic crust, (b) lower seismic zones are related to dehydration reactions in the subducting mantle, and (c) the forearc mantle is aseismic. Petrologic models of subducting lithosphere will be created using new phase diagrams and rock property data bases and the resulting layered seismic-velocity models will be tested against observed dispersion of seismic body waves. The amount and distribution of forearc mantle hydration (serpentinization) will be quantified by integrating seismological observations with mineral physics calculations.
Please report errors in award information by writing to: award-abstracts-info@nsf.gov.

Please use the browser back button to return to the previous screen.